3.598 \(\int \frac{A+B \tan (c+d x)}{\cot ^{\frac{3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=392 \[ \frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}+\frac{\left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )^2}+\frac{\left (a^2 (-(A+B))+2 a b (A-B)+b^2 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\left (a^2 (-(A+B))+2 a b (A-B)+b^2 (A+B)\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\sqrt{a} \left (a^2 A b+a^3 B+5 a b^2 B-3 A b^3\right ) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d \left (a^2+b^2\right )^2} \]

[Out]

((2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2*d)
 - ((2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2
*d) - (Sqrt[a]*(a^2*A*b - 3*A*b^3 + a^3*B + 5*a*b^2*B)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(b^(3/2)*
(a^2 + b^2)^2*d) + (a*(A*b - a*B)*Sqrt[Cot[c + d*x]])/(b*(a^2 + b^2)*d*(b + a*Cot[c + d*x])) + ((a^2*(A - B) -
 b^2*(A - B) + 2*a*b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)^2*d)
- ((a^2*(A - B) - b^2*(A - B) + 2*a*b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*
(a^2 + b^2)^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.916095, antiderivative size = 392, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 13, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.394, Rules used = {3581, 3609, 3653, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ \frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}+\frac{\left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )^2}+\frac{\left (a^2 (-(A+B))+2 a b (A-B)+b^2 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\left (a^2 (-(A+B))+2 a b (A-B)+b^2 (A+B)\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )^2}-\frac{\sqrt{a} \left (a^2 A b+a^3 B+5 a b^2 B-3 A b^3\right ) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2),x]

[Out]

((2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2*d)
 - ((2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2
*d) - (Sqrt[a]*(a^2*A*b - 3*A*b^3 + a^3*B + 5*a*b^2*B)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(b^(3/2)*
(a^2 + b^2)^2*d) + (a*(A*b - a*B)*Sqrt[Cot[c + d*x]])/(b*(a^2 + b^2)*d*(b + a*Cot[c + d*x])) + ((a^2*(A - B) -
 b^2*(A - B) + 2*a*b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)^2*d)
- ((a^2*(A - B) - b^2*(A - B) + 2*a*b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*
(a^2 + b^2)^2*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n
 + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\cot ^{\frac{3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx &=\int \frac{B+A \cot (c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2} \, dx\\ &=\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac{\int \frac{\frac{1}{2} \left (-a A b-a^2 B-2 b^2 B\right )-b (A b-a B) \cot (c+d x)+\frac{1}{2} a (A b-a B) \cot ^2(c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{b \left (a^2+b^2\right )}\\ &=\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac{\int \frac{-b \left (2 a A b-a^2 B+b^2 B\right )+b \left (a^2 A-A b^2+2 a b B\right ) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx}{b \left (a^2+b^2\right )^2}+\frac{\left (a \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right )\right ) \int \frac{1+\cot ^2(c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{2 b \left (a^2+b^2\right )^2}\\ &=\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac{2 \operatorname{Subst}\left (\int \frac{b \left (2 a A b-a^2 B+b^2 B\right )-b \left (a^2 A-A b^2+2 a b B\right ) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{b \left (a^2+b^2\right )^2 d}+\frac{\left (a \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{2 b \left (a^2+b^2\right )^2 d}\\ &=\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac{\left (a \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+a x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{b \left (a^2+b^2\right )^2 d}-\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}\\ &=-\frac{\sqrt{a} \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}+\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}+\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}+\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}-\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=-\frac{\sqrt{a} \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}+\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}+\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d}+\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d}\\ &=\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\sqrt{a} \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}+\frac{a (A b-a B) \sqrt{\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}+\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}-\frac{\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d}\\ \end{align*}

Mathematica [A]  time = 2.552, size = 342, normalized size = 0.87 \[ \frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (\frac{4 \sqrt{a} \left (a^2+b^2\right ) (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2}}-2 \sqrt{2} \left (a^2 (-(A+B))+2 a b (A-B)+b^2 (A+B)\right ) \left (\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )+\frac{8 \sqrt{a} \left (a B \left (a^2+3 b^2\right )-2 A b^3\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2}}+\frac{4 a \left (a^2+b^2\right ) (A b-a B) \sqrt{\tan (c+d x)}}{b (a+b \tan (c+d x))}+\sqrt{2} \left (a^2 (A-B)+2 a b (A+B)+b^2 (B-A)\right ) \left (\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{4 d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-2*Sqrt[2]*(2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*(ArcTan[1 - Sqr
t[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) + (4*Sqrt[a]*(a^2 + b^2)*(A*b - a*B)*ArcTan
[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/b^(3/2) + (8*Sqrt[a]*(-2*A*b^3 + a*(a^2 + 3*b^2)*B)*ArcTan[(Sqrt[b]*Sq
rt[Tan[c + d*x]])/Sqrt[a]])/b^(3/2) + Sqrt[2]*(a^2*(A - B) + b^2*(-A + B) + 2*a*b*(A + B))*(Log[1 - Sqrt[2]*Sq
rt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) + (4*a*(a^2 + b^2)*(A*b
 - a*B)*Sqrt[Tan[c + d*x]])/(b*(a + b*Tan[c + d*x]))))/(4*(a^2 + b^2)^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.675, size = 40734, normalized size = 103.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)^2*cot(d*x + c)^(3/2)), x)